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Two of t.fie main (omponents _)["I.he at mosl)here of lo,

neutral oxygen and sulfur, weie detected for the fhst time

in 1986 with the IUE. Four .bservat_ons have vlc.hled

I)rightm'sses that arc similar, regardh'ss of whether the

upstream or the downstream sides of the l.orus l)la_ma

flow alotmd h, is observed. A simple model requires lhe

emlssi,ms to be produced by the i.teractiou of 0 and S

columns in the exospherlc range with _2eV electrons

('oolir_g of the 5eV t.orus elect_ons would be _equh'ed

prior 1.o their interaction with the atnlosphere ,)f h,. Sex"

eral inconsistencies in the cfiaraclellst:cs of lhe speclra

that cannot I)c a(c,mnted for in thls model rcquile fur-

thor analysis _xlth Improved al.i,llnc data. The ],) [)lasiila

t,ot us has been monitored with the. IUE since March 1979.

Flus study has established tile long-term stabdlty of tile

warm i.,n'us The (,I)s('rved brightncsses have be('n ana

lvzed using a model of the torus, and varial.ions ,,f h'ss

l,haII _30% in the (ompositi.n are observed, the quaul.i-

t_ve results being model dependent.

Kevw,wds: lo atmosphere, h) l.ol us, ,Jupiter

I. INTI{ODUCTION

The products of the active volcanoes discovered by

l-oyager / on h, form a torus of plasma at, the orbit

of this Jovian satellite. Although the charaterlstics of

the plasma torus arc relatively well known, the processes

through which it is replenished by 1o are not well under-

stood. Most of the w)lcanic ejecta is not energetic enough

to escape lo and thus condenses on tim surface. However,

direct surface sputtering hy the torus ions has been found

to be an inefficient supply mechanism. As a consequence,

an atmosphere has been l)ostulated as an inl.c_medlatc

agent to replenish the torus, but many (tuesli(,ns remain

unanswered. What IS the nature ,)f the atm,,sphere '_

Which are the interaction mechanisms l)etweerl the 1,,

torus plasnla and its surface and atmosphere '7 \\:hat is

the variability and stabihtv of the system':

Until recently, very few direct observaltons of h/s at

mosphereexisted. In 1986, two of the main atmospheric

c-nstituents were detected for the first tram with the Jn-

ternathmal Ultraviolet l:Txplorer (IUE). 'Phe results ob-

tained st) far for a total <)f four smh IUE observations

ale presented in Section 2.

The h, plasma Lotus has been observed with the IUE

_in(e March I,(179, when l/oyagcr 1 made ;n-s_lu measure-

ments of Ihe l:)[us. A systematic sludy of the pr()perties

and long-term behaviour of the torus has since been un-

(h'iwav and the most current results (,f this study are

presented in Se('t.ton 3

2. TIlE A'I'M()SI'tIERE O1" IO

Pwneer I0 discovered an ionosl)fiere()n I% and the

Voyager I lll.lS measured an SO2 surface, density _< 0.032

('m atnl (p _10 -7 bars) resulting from either std)limati,m

of S()2 frost or a volcanic plume. At least 20% of the

%IIF[*D('c (if I() is covered by S02 frost of volcanic origin.

The atm,,sphere could t.hus be dominated by subhmated

SO2 and be colhsionally thick or tlml_ or it could even be

episodic, driven by volcanoes. Many models of the atmo

•q)[icrc exlsl, and some law." a relatiw,ly thick atmosp]letc

that L_lll IlldllIL_llll both Jill iOllosphere alld all exosphere

that could be composed mainly of atormc oxygen and

sulfur, tim l)hotocfiemical products of $02. Others adv(>-

cate a thin aimosphere due t,o the ralher limited amount

()f SO2 surface frost In any case, neutral oxygen and

sulfllr are expected 1.o be two of the main atmospheric

c,)nstituents.

The first detection of emissions of oxygen and sul-

fur on the atmosphere of [o was made with the IUE in

1986 (Ref. 1). Four short-wavelength (1150 1950_),

low-dispersion spectra (Fig 1) have been obtained as lo

orl)ited east and west of,Jupiter (Fig. 2). Excellentl)oint -

ing accuracy was maintained throughout the 14-hour ,)l)-

servations of this moving target, allowing for a positive

detecl.ion (,f the emissions. The emissions were found to

originate from a region inside _4 Io radii from the sur-

fa ( e

The observed oxyger_ and sulfur multiplets are: a

blend of el A 1304 and SI A 1299, Oil ,_ I356, SI A 1d29,
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Figure 1. IUE spectra oflo and torus (top) and (cen-

ter) from the 1987 observations, together with a torus

spectrum (bottom). The emissions originating from Io

are marked in the top and center spectra, while those

originating from the torus are marked in the bottom spec-

trunl.

VIEWING GEOMETRY
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Figure2. Viewing geometry depicted from the north

pole of Jupiter for the 1o observahons. The trajectory

of lo as it orbited east and west of Jupiter throughout

the observations is marked with a solid line. The torus,

indicated by the dashed lines, is flowing past Io.

SI A 1479, SI A 1814, and SI] A 1900, 1914. The measured

brightnesses of the four spectra are very similar within

the estimated errors (Fig. 3). Some models predict dif-

ferent atmospheric properties for regions corresponding

to the upstream (west) or downstream (east) sides of the
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Figure 3. Measured brightnesses h,r the four h, ob-

servations plotted as a function of wavelength, derived

using an emisison disk of a radius of 5 1o radii.

torus plasma flow (at 57 km/sec) around 1o, and t,, the

day or night sides. Our observations have viewed both

the upstream and the downstream on the day side. The

similarity in the spectra obtained should therefore con-

strain any atnlospherJc model.

Various spin-forbidden transitions were observed, sug-

gesting electron impact excitation. In fact, the emissions

were expected to be produced by the interaction of 5 eV

torus electrons with the exosphere. To study this pos-

sibility, the emiss)ons were modeled assuming electron-

impact as the only excitation process. For sulfur, only

the theoretical data of Ho and tlenry (Ref. 2) is avail-

able, and it includes only three of the observed transi-

tions. From these data, a ratio of the observed emissions

was predicted as a function of electron temperature. The

measured ratios agree with an electron temperature of

_2eV (F'ig. 4). The Ol A 1304 electron-impact data

has been recently measured in the laboratory by Doering

(Ref. 3) to have a resonance near threshold which agrees

with that predicted I)y Rountree and Henry (Ref. 4). The

theoretical data of Rountree (Ref. 5) for the O1] A1356

emission includes another resonance near threshohl and

was used to model the ratio of these two oxygen emissions

as a functiml of electron temperature The measured ra-

tio also are compatible with an electron temperature of

_2eV (Fig. 5).

The derived column densities, 9.4 x 10 14cm-2 and

2.,1 × 10 -14 cm -2 for oxygen and sulfur_ respectively, are

in the exospheric range. Therefore, in this model, an un

known mechanism is required to cool the torus electrons

from 5eV to 2eV previous to their interaction wtth the

exosphere. One further inconsistency lu fhis model ,s

that resonance scattering of the solar 0 and S line_ xv_s

ignored in the analysis because the g-factors aie smaller

than the excitathm rate due to 5eV" electr, ms. Im_ f,,r

ennssions produced by 2eV" electrons the exc,lal,,,n ,a_c

he.comes comparable t,:, the g-factors f,r s<m_e of the mul-

tHJets.
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AIIho.gh a satisfactory exl)hmatio,_ of the IUE ob-

serval tons of the atmost)here of Io cannot be supt)hed yet,

these ol)servatmns should prove useful in the future as

mqnoved atomi( data I)ecomes avadable and more obser-

rattans are performed. The IUE is valuable for studying

h,:s main atTnost)heric COllStlf,!lelltS alid sholdd thus pro-

v,h. ms@H into the nature of [o's atmosphere and H.s

inleracl.l,m with lhe torus Future observations should

als,, mea,ure any temporal variat.i,ms and l)rovide a basis

fi,r _,hseivaltons by Gahleo and lIHT.

3. TIlE I0 P1,ASMA TORUS

The i)las,na l,(,rus is comi)osed i)rimarily of ions ,,f

s,,If,,r and ,,xvgen. Its cornpositHm is determined mainly

by the ele(:troll density (n_) and ternperature (Tel , wHh

average wdues measured by Voya.qer 1 of _2000cm 3

and _5e\;, respectively. The torus has a scale height of

about one .Iovmn radius, and is centered at the orbit of

Io wil h ,ts ce,Hr,f,)gal axis lilted 7 ° away fv'om the .Jovian

r,,I.aliomd axis As the plasma (;orot_,tes u'tlh thc.l,,_,an

Tnagnetlc [iehl, it wobbles with respec( t,(> a gi\ell hm' ,;f

s,gl_l t.hr,,ugh.ut a _10 hour ,h.,vmn r,,tati,,n -\ t,,r,,,

anna al 5.9 ,Jovian radu, where lhe column sampled vs

lllaXillllll)l_ \VlrlS viewed though(rot llloqt Of the e.xl)_,qtlT{'s

(lqg. 6) The inl.egralion time is typically b,,t,_,',', c, 1,,

I'1 h,,urs and 1he speclra ,,l)fained ICplt'Sclll ],_,i/gll,,,.hnal

average_. (Grolmd-based observations of the t,,rus are

mu(h shorter and sample the torus longitudinally)

'-,i'-,:'_'_, 0_: ":7'";:;Y/l:' _ ;;'': ...... <';'"°"-";,}2t_F{_',_'

Figure .5. Ol A lg0'l t,o O1) A 1356 line ratio olH.a,ned

from the theoretical data of Rountree and Henry (l/.ef 4)

and Ilountree (l{ef 5) ]:L>l,h data include a ,es(mance

,lear Ihteshohl, and cascade effects have been added to

Ihe O1 k 1304 data. The mesured values are indicated.
Figure6 A "snal)-shot"ofthe.h,piter-h>-Torussys-

tem. The SWI' large aperture is sho_n.

Furthermore, there are some lnconsisl.encies in the

characteristics of the spectra that do not agree with the

theoretical atomic data, namely the presence of the bright

SI A 1'179 emission multiplet eoml)ared to l.he almost

undetectable SI k 1429 emission multiplet. A rocket-

spectrum of the torus (l{ef. 6) shows these lwo sulfl, r

emissions in agreement with the theoretical predictions.

Therefore, olher excitation processes should be signifi-

cant on 1o. We are presently studying other possibdities

such as electron-impact on SO2 and cascade effects aml

re¢oml>ination of S+, as suggested by the work of ,Judge

(llef. 7). Again: the alomic data is very lilmted for tllese

excitation processes

The observed torus emission features are SII A 1256,

Sill} A 1729, and S1V] A1406 (Fig. 1), whereas oxygen

ions can,,ot be detected with the IUE. The measured

l)rightnesses vary because of tim ddTerent viewing geome-

fries, bul the ratio of the brightnesses does not vary as

much. In order to compe_re the observations, a model

()f tim l.,)rus has to be employed. The original model is

described in detail in Skinner (It.el. 8) and Moos el al.

tiler. 9), in this work some n,,)del parameters have been

Ul)-dal.cd aim (.he data set has I)een extended.
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The model predicts an average brightness for each of

the emission features by estimating tile wdume emission

rate integrated over all the portions of the torus falling

in the field-of-view lhoughout the observation. This vol-

ume emission rate is a function of the electron tempera-

ture, electron density and ion density and the following

representative, longitudinally-averaged spatial profiles for

these quantities are adopted'

- the electron temperature and density profiles in the

torus centrifugal plane (Fig. 7) derived from the 1:01/-

a.qer I observations (Ref. 10);

- the electron density at a distance z from the centrifu

gal plane approximated with ascalinglaw (Ref. 11) and

using the revised scale height of _1 Jovian radius (Ref.

t2);

- ion densities assumed to be constant fractious of lhe

eleclron density and to follow the same spatial profile,

since the plasma is assumed to be homogeneously mixed:

and

- the electron temperature dependence in the volume

emission rate is included in the thermally averaged colli-

sion strength (Fig. 7) of the S II 1256 A transition (Ref.

13), hut no temperature dependent atomic data is avail-

able for the SIX:} A1406 emission Since the atomlc data

for the Sill} A 1729 emission is rather uncertain, lhe theo-

retically calculated, temperature-dependent values ,,[ lh,

and Henry (Ref 14) have been employed.

The ratm of the measured to model-predicted bright-

hess and the requirement of local plasma neulrality are

used to predict the characteristics of the torus plasma,

namely the electron concentration relative to the V0y-

(zfer 1 case, R, and the S +, S +_, and S +a rmxing ratios

or fractional concentrations, M II_ _'i III, and M IX:. The

results, presented in Figures 8 and 9, are: R = 1.07 ±

9%, M II = 0.10 .± 30%, M IH 0.22 5- 17%, and M lV

= 0.021 ± 35%, plus a mixing ratio of 0.39 inferred g>r

O +. (The large variability of Mtv is partly due to the

uncertainty in the low-level sir 3 ;_ 1406 signal.)
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Also plotted (right) is the profile of the thermally aver-

aged collision strength of the S II 1256 _ multiplet.
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The resulis indicate that. despHe _h,,_t-t.e_m _,_im

tlons _,f le_,._ than _30%, lhe 1,,lus has lcm_uned '4aSh'

_]n<e (he l'o_laqcr l en(ounIer in 197!) lll),mgh mid l!)87

$4.,$42, S _;_,and()_wouldcalrvre_pc_tlw'lx. 10%,,1-1%,

6%, ;uld 3iY_ of the <.ha-ge. These rvsult'_ bring _,ln lliE

cstlnml.es of the I_)_ll_ plasma chalgc distIibuii,,n _h)._c

1,, Ill(' cslimates derived fr, ml the 17_-.q_lu (t'LS) pl,_sm_,

mca.',uremenls and the ulltaviolel spc<lta (Ul'5)(,f I'oq-

aqer' / as im'i('wed by I/agcn,d (_tef 1.5) b;_vr) (h,,*_gh

the rm,dcl carlm)l distmg.ulsh relatively '.mall. simuliane-

,,us (hange_ ])) l lw eh'< i i,)n i('Ill[)('ratlll(' aIl(] densiiy and

its quani)lal.i_<" le_ulls are thus m,)dvl d<'p<')Mcn(, lhe

ql)alilatlv," )','sult ,)f lhc hmg-ter))l s(abihlv <)f lhe I(,TUS

_.. qmic firm

II _ imp_,rtan( io continue these lIH '2 ,>bscrvail<)l)s as

l.lwv c<>nMtl uic a unlquc, hmg l.clm study ()f 1<)i u._ pl,_ma

dc)lsily and will be an invaluable link bc(wcen (he lll-s_{l_

l))casur('mm)_s ,,f l-O!laqCr / and _]_r>s(' ,>f H,S'T. ,'_.S'TII(),

and Gahle(,.

\¥e gralefully a<'knowledge the asslsIan('e ()f the IUI'J

<)bscrvalory siaff m the ac(luis_i.ion and reduction of ihc

_aivlhlv (lai.a. ']'lli_ r('sear(h wa_ _upp,)t(<'d bx .,N \5_ \

under gran( N5(;-539'1 i<, lhc,J<)hns lh,pk_u_ l;)_i,,,),._I\
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